Non-parametric Semi-Supervised Learning in Many-body Hilbert Space with Rescaled Logarithmic Fidelity

1 Jul 2021  ·  Wei-Ming Li, Shi-Ju Ran ·

In quantum and quantum-inspired machine learning, the very first step is to embed the data in quantum space known as Hilbert space. Developing quantum kernel function (QKF), which defines the distances among the samples in the Hilbert space, belongs to the fundamental topics for machine learning. In this work, we propose the rescaled logarithmic fidelity (RLF) and non-parametric semi-supervised learning in the quantum space, which we name as RLF-NSSL. The rescaling takes advantage of the non-linearity of the kernel to tune the mutual distances of samples in the Hilbert space, and meanwhile avoids the exponentially-small fidelities between quantum many-qubit states. Being non-parametric excludes the possible effects from the variational parameters, and evidently demonstrates the advantages from the space itself. We compare RLF-NSSL with several well-known non-parametric algorithms including naive Bayes classifiers, k-nearest neighbors, and spectral clustering. Our method exhibits better accuracy particularly for the unsupervised case with no labeled samples and the few-shot cases with small numbers of labeled samples. With the visualizations by t-stochastic neighbor embedding, our results imply that the machine learning in the Hilbert space complies with the principles of maximal coding rate reduction, where the low-dimensional data exhibit within-class compressibility, between-class discrimination, and overall diversity. Our proposals can be applied to other quantum and quantum-inspired machine learning, including the methods using the parametric models such as tensor networks, quantum circuits, and quantum neural networks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here