Nonstationary Distance Metric Learning

11 Mar 2016Kristjan GreenewaldStephen KelleyAlfred Hero

Recent work in distance metric learning has focused on learning transformations of data that best align with provided sets of pairwise similarity and dissimilarity constraints. The learned transformations lead to improved retrieval, classification, and clustering algorithms due to the better adapted distance or similarity measures... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet