Novel Approaches for Predicting Risk Factors of Atherosclerosis

28 Jan 2015  ·  V. Sree Hari Rao, M. Naresh Kumar ·

Coronary heart disease (CHD) caused by hardening of artery walls due to cholesterol known as atherosclerosis is responsible for large number of deaths world-wide. The disease progression is slow, asymptomatic and may lead to sudden cardiac arrest, stroke or myocardial infraction. Presently, imaging techniques are being employed to understand the molecular and metabolic activity of atherosclerotic plaques to estimate the risk. Though imaging methods are able to provide some information on plaque metabolism they lack the required resolution and sensitivity for detection. In this paper we consider the clinical observations and habits of individuals for predicting the risk factors of CHD. The identification of risk factors helps in stratifying patients for further intensive tests such as nuclear imaging or coronary angiography. We present a novel approach for predicting the risk factors of atherosclerosis with an in-built imputation algorithm and particle swarm optimization (PSO). We compare the performance of our methodology with other machine learning techniques on STULONG dataset which is based on longitudinal study of middle aged individuals lasting for twenty years. Our methodology powered by PSO search has identified physical inactivity as one of the risk factor for the onset of atherosclerosis in addition to other already known factors. The decision rules extracted by our methodology are able to predict the risk factors with an accuracy of $99.73%$ which is higher than the accuracies obtained by application of the state-of-the-art machine learning techniques presently being employed in the identification of atherosclerosis risk studies.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here