Novel positional encodings to enable tree-based transformers

NeurIPS 2019 Vighnesh ShivChris Quirk

Neural models optimized for tree-based problems are of great value in tasks like SQL query extraction and program synthesis. On sequence-structured data, transformers have been shown to learn relationships across arbitrary pairs of positions more reliably than recurrent models... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet