Occlusion Detection and Motion Estimation with Convex Optimization

We tackle the problem of simultaneously detecting occlusions and estimating optical flow. We show that, under standard assumptions of Lambertian reflection and static illumination, the task can be posed as a convex minimization problem. Therefore, the solution, computed using efficient algorithms, is guaranteed to be globally optimal, for any number of independently moving objects, and any number of occlusion layers. We test the proposed algorithm on benchmark datasets, expanded to enable evaluation of occlusion detection performance.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here