On a Stochastic Fundamental Lemma and Its Use for Data-Driven Optimal Control

26 Nov 2021  ·  Guanru Pan, Ruchuan Ou, Timm Faulwasser ·

Data-driven control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement noise. However, besides measurement noise, stochastic disturbances might also directly affect the dynamics. In this paper, we leverage Polynomial Chaos Expansions (PCE) to extend the deterministic fundamental lemma towards stochastic systems. This extension allows to predict future statistical distributions of the inputs and outputs for stochastic LTI systems in data-driven fashion, i.e., based on the knowledge of previously recorded input-output-disturbance data and of the disturbance distribution we perform data-driven uncertainty propagation. Finally, we analyze data-driven stochastic optimal control problems and we propose a conceptual framework for data-driven stochastic predictive control. Numerical examples illustrate the efficacy of the proposed concepts.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here