On Effective Parallelization of Monte Carlo Tree Search

15 Jun 2020Anji LiuYitao LiangJi LiuGuy Van den BroeckJianshu Chen

Despite its groundbreaking success in Go and computer games, Monte Carlo Tree Search (MCTS) is computationally expensive as it requires a substantial number of rollouts to construct the search tree, which calls for effective parallelization. However, how to design effective parallel MCTS algorithms has not been systematically studied and remains poorly understood... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet