One or Two Components? The Scattering Transform Answers

2 Mar 2020  ·  Vincent Lostanlen, Alice Cohen-Hadria, Juan Pablo Bello ·

With the aim of constructing a biologically plausible model of machine listening, we study the representation of a multicomponent stationary signal by a wavelet scattering network. First, we show that renormalizing second-order nodes by their first-order parents gives a simple numerical criterion to assess whether two neighboring components will interfere psychoacoustically. Secondly, we run a manifold learning algorithm (Isomap) on scattering coefficients to visualize the similarity space underlying parametric additive synthesis. Thirdly, we generalize the "one or two components" framework to three sine waves or more, and prove that the effective scattering depth of a Fourier series grows in logarithmic proportion to its bandwidth.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here