One Word, Two Sides: Traces of Stance in Contextualized Word Representations
The way we use words is influenced by our opinion. We investigate whether this is reflected in contextualized word embeddings. For example, is the representation of “animal” different between people who would abolish zoos and those who would not? We explore this question from a Lexical Semantic Change standpoint. Our experiments with BERT embeddings derived from datasets with stance annotations reveal small but significant differences in word representations between opposing stances.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here