Online Detection and Classification of Dynamic Hand Gestures With Recurrent 3D Convolutional Neural Network

Automatic detection and classification of dynamic hand gestures in real-world systems intended for human computer interaction is challenging as: 1) there is a large diversity in how people perform gestures, making detection and classification difficult; 2) the system must work online in order to avoid noticeable lag between performing a gesture and its classification; in fact, a negative lag (classification before the gesture is finished) is desirable, as feedback to the user can then be truly instantaneous. In this paper, we address these challenges with a recurrent three-dimensional convolutional neural network that performs simultaneous detection and classification of dynamic hand gestures from multi-modal data. We employ connectionist temporal classification to train the network to predict class labels from in-progress gestures in unsegmented input streams. In order to validate our method, we introduce a new challenging multi-modal dynamic hand gesture dataset captured with depth, color and stereo-IR sensors. On this challenging dataset, our gesture recognition system achieves an accuracy of 83.8%, outperforms competing state-of-the-art algorithms, and approaches human accuracy of 88.4%. Moreover, our method achieves state-of-the-art performance on SKIG and ChaLearn2014 benchmarks.

PDF Abstract


Introduced in the Paper:


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here