Online Learning: A Comprehensive Survey

8 Feb 2018 Steven C. H. Hoi Doyen Sahoo Jing Lu Peilin Zhao

Online learning represents an important family of machine learning algorithms, in which a learner attempts to resolve an online prediction (or any type of decision-making) task by learning a model/hypothesis from a sequence of data instances one at a time. The goal of online learning is to ensure that the online learner would make a sequence of accurate predictions (or correct decisions) given the knowledge of correct answers to previous prediction or learning tasks and possibly additional information... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet