Online Learning Quantum States with the Logarithmic Loss via VB-FTRL

6 Nov 2023  ·  Wei-Fu Tseng, Kai-Chun Chen, Zi-Hong Xiao, Yen-Huan Li ·

Online learning quantum states with the logarithmic loss (LL-OLQS) is a quantum generalization of online portfolio selection, a classic open problem in the field of online learning for over three decades. The problem also emerges in designing randomized optimization algorithms for maximum-likelihood quantum state tomography. Recently, Jezequel et al. (arXiv:2209.13932) proposed the VB-FTRL algorithm, the first nearly regret-optimal algorithm for OPS with moderate computational complexity. In this note, we generalize VB-FTRL for LL-OLQS. Let $d$ denote the dimension and $T$ the number of rounds. The generalized algorithm achieves a regret rate of $O ( d^2 \log ( d + T ) )$ for LL-OLQS. Each iteration of the algorithm consists of solving a semidefinite program that can be implemented in polynomial time by, e.g., cutting-plane methods. For comparison, the best-known regret rate for LL-OLQS is currently $O ( d^2 \log T )$, achieved by the exponential weight method. However, there is no explicit implementation available for the exponential weight method for LL-OLQS. To facilitate the generalization, we introduce the notion of VB-convexity. VB-convexity is a sufficient condition for the logarithmic barrier associated with any function to be convex and is of independent interest.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here