Online Learning with an Unknown Fairness Metric

We consider the problem of online learning in the linear contextual bandits setting, but in which there are also strong individual fairness constraints governed by an unknown similarity metric. These constraints demand that we select similar actions or individuals with approximately equal probability (arXiv:1104.3913), which may be at odds with optimizing reward, thus modeling settings where profit and social policy are in tension. We assume we learn about an unknown Mahalanobis similarity metric from only weak feedback that identifies fairness violations, but does not quantify their extent. This is intended to represent the interventions of a regulator who "knows unfairness when he sees it" but nevertheless cannot enunciate a quantitative fairness metric over individuals. Our main result is an algorithm in the adversarial context setting that has a number of fairness violations that depends only logarithmically on $T$, while obtaining an optimal $O(\sqrt{T})$ regret bound to the best fair policy.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here