Open-World Stereo Video Matching with Deep RNN

ECCV 2018 Yiran ZhongHongdong LiYuchao Dai

Deep Learning based stereo matching methods have shown great successes and achieved top scores across different benchmarks. However, like most data-driven methods, existing deep stereo matching networks suffer from some well-known drawbacks such as requiring large amount of labeled training data, and that their performances are fundamentally limited by the generalization ability... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet