Optimal $δ$-Correct Best-Arm Selection for Heavy-Tailed Distributions

24 Aug 2019  ·  Shubhada Agrawal, Sandeep Juneja, Peter Glynn ·

Given a finite set of unknown distributions or arms that can be sampled, we consider the problem of identifying the one with the maximum mean using a $\delta$-correct algorithm (an adaptive, sequential algorithm that restricts the probability of error to a specified $\delta$) that has minimum sample complexity. Lower bounds for $\delta$-correct algorithms are well known. $\delta$-correct algorithms that match the lower bound asymptotically as $\delta$ reduces to zero have been previously developed when arm distributions are restricted to a single parameter exponential family. In this paper, we first observe a negative result that some restrictions are essential, as otherwise, under a $\delta$-correct algorithm, distributions with unbounded support would require an infinite number of samples in expectation. We then propose a $\delta$-correct algorithm that matches the lower bound as $\delta$ reduces to zero under the mild restriction that a known bound on the expectation of $(1+\epsilon)^{th}$ moment of the underlying random variables exists, for $\epsilon > 0$. We also propose batch processing and identify near-optimal batch sizes to speed up the proposed algorithm substantially. The best-arm problem has many learning applications, including recommendation systems and product selection. It is also a well-studied classic problem in the simulation community.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods