Optimal Estimator for Linear Regression with Shuffled Labels

2 Oct 2023  ·  Hang Zhang, Ping Li ·

This paper considers the task of linear regression with shuffled labels, i.e., $\mathbf Y = \mathbf \Pi \mathbf X \mathbf B + \mathbf W$, where $\mathbf Y \in \mathbb R^{n\times m}, \mathbf Pi \in \mathbb R^{n\times n}, \mathbf X\in \mathbb R^{n\times p}, \mathbf B \in \mathbb R^{p\times m}$, and $\mathbf W\in \mathbb R^{n\times m}$, respectively, represent the sensing results, (unknown or missing) corresponding information, sensing matrix, signal of interest, and additive sensing noise. Given the observation $\mathbf Y$ and sensing matrix $\mathbf X$, we propose a one-step estimator to reconstruct $(\mathbf \Pi, \mathbf B)$. From the computational perspective, our estimator's complexity is $O(n^3 + np^2m)$, which is no greater than the maximum complexity of a linear assignment algorithm (e.g., $O(n^3)$) and a least square algorithm (e.g., $O(np^2 m)$). From the statistical perspective, we divide the minimum $snr$ requirement into four regimes, e.g., unknown, hard, medium, and easy regimes; and present sufficient conditions for the correct permutation recovery under each regime: $(i)$ $snr \geq \Omega(1)$ in the easy regime; $(ii)$ $snr \geq \Omega(\log n)$ in the medium regime; and $(iii)$ $snr \geq \Omega((\log n)^{c_0}\cdot n^{{c_1}/{srank(\mathbf B)}})$ in the hard regime ($c_0, c_1$ are some positive constants and $srank(\mathbf B)$ denotes the stable rank of $\mathbf B$). In the end, we also provide numerical experiments to confirm the above claims.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods