Optimizing Coordinative Schedules for Tanker Terminals: An Intelligent Large Spatial-Temporal Data-Driven Approach -- Part 1

8 Apr 2022  ·  Deqing Zhai, Xiuju Fu, Xiao Feng Yin, Haiyan Xu, Wanbing Zhang, Ning li ·

In this study, a novel coordinative scheduling optimization approach is proposed to enhance port efficiency by reducing average wait time and turnaround time. The proposed approach consists of enhanced particle swarm optimization (ePSO) as kernel and augmented firefly algorithm (AFA) as global optimal search. Two paradigm methods of the proposed approach are investigated, which are batch method and rolling horizon method. The experimental results show that both paradigm methods of proposed approach can effectively enhance port efficiency. The average wait time could be significantly reduced by 86.0% - 95.5%, and the average turnaround time could eventually save 38.2% - 42.4% with respect to historical benchmarks. Moreover, the paradigm method of rolling horizon could reduce to 20 mins on running time over 3-month datasets, rather than 4 hrs on batch method at corresponding maximum performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods