Panoptic segmentation with highly imbalanced semantic labels
We describe here the panoptic segmentation method we devised for our participation in the CoNIC: Colon Nuclei Identification and Counting Challenge at ISBI 2022. Key features of our method are a weighted loss specifically engineered for semantic segmentation of highly imbalanced cell types, and a state-of-the art nuclei instance segmentation model, which we combine in a Hovernet-like architecture.
PDF AbstractDatasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here