Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization

15 Feb 2019  ·  Hesham Mostafa, Xin Wang ·

Modern deep neural networks are typically highly overparameterized. Pruning techniques are able to remove a significant fraction of network parameters with little loss in accuracy. Recently, techniques based on dynamic reallocation of non-zero parameters have emerged, allowing direct training of sparse networks without having to pre-train a large dense model. Here we present a novel dynamic sparse reparameterization method that addresses the limitations of previous techniques such as high computational cost and the need for manual configuration of the number of free parameters allocated to each layer. We evaluate the performance of dynamic reallocation methods in training deep convolutional networks and show that our method outperforms previous static and dynamic reparameterization methods, yielding the best accuracy for a fixed parameter budget, on par with accuracies obtained by iteratively pruning a pre-trained dense model. We further investigated the mechanisms underlying the superior generalization performance of the resultant sparse networks. We found that neither the structure, nor the initialization of the non-zero parameters were sufficient to explain the superior performance. Rather, effective learning crucially depended on the continuous exploration of the sparse network structure space during training. Our work suggests that exploring structural degrees of freedom during training is more effective than adding extra parameters to the network.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods