Periodic Freight Demand Estimation for Large-scale Tactical Planning

19 May 2021  ·  Greta Laage, Emma Frejinger, Gilles Savard ·

Freight carriers rely on tactical planning to design their service network to satisfy demand in a cost-effective way. For computational tractability, deterministic and cyclic Service Network Design (SND) formulations are used to solve large-scale problems. A central input is the periodic demand, that is, the demand expected to repeat in every period in the planning horizon. In practice, demand is predicted by a time series forecasting model and the periodic demand is the average of those forecasts. This is, however, only one of many possible mappings. The problem consisting in selecting this mapping has hitherto been overlooked in the literature. We propose to use the structure of the downstream decision-making problem to select a good mapping. For this purpose, we introduce a multilevel mathematical programming formulation that explicitly links the time series forecasts to the SND problem of interest. The solution is a periodic demand estimate that minimizes costs over the tactical planning horizon. We report results in an extensive empirical study of a large-scale application from the Canadian National Railway Company. They clearly show the importance of the periodic demand estimation problem. Indeed, the planning costs exhibit an important variation over different periodic demand estimates and using an estimate different from the mean forecast can lead to substantial cost reductions. Moreover, the costs associated with the periodic demand estimates based on forecasts were comparable to, or even better than those obtained using the mean of actual demand.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here