Personalized Federated Learning with Contextual Modulation and Meta-Learning

23 Dec 2023  ·  Anna Vettoruzzo, Mohamed-Rafik Bouguelia, Thorsteinn Rögnvaldsson ·

Federated learning has emerged as a promising approach for training machine learning models on decentralized data sources while preserving data privacy. However, challenges such as communication bottlenecks, heterogeneity of client devices, and non-i.i.d. data distribution pose significant obstacles to achieving optimal model performance. We propose a novel framework that combines federated learning with meta-learning techniques to enhance both efficiency and generalization capabilities. Our approach introduces a federated modulator that learns contextual information from data batches and uses this knowledge to generate modulation parameters. These parameters dynamically adjust the activations of a base model, which operates using a MAML-based approach for model personalization. Experimental results across diverse datasets highlight the improvements in convergence speed and model performance compared to existing federated learning approaches. These findings highlight the potential of incorporating contextual information and meta-learning techniques into federated learning, paving the way for advancements in distributed machine learning paradigms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods