Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object Detection

CVPR 2023  ·  Yi Yu, Feipeng Da ·

With the vigorous development of computer vision, oriented object detection has gradually been featured. In this paper, a novel differentiable angle coder named phase-shifting coder (PSC) is proposed to accurately predict the orientation of objects, along with a dual-frequency version (PSCD). By mapping the rotational periodicity of different cycles into the phase of different frequencies, we provide a unified framework for various periodic fuzzy problems caused by rotational symmetry in oriented object detection. Upon such a framework, common problems in oriented object detection such as boundary discontinuity and square-like problems are elegantly solved in a unified form. Visual analysis and experiments on three datasets prove the effectiveness and the potentiality of our approach. When facing scenarios requiring high-quality bounding boxes, the proposed methods are expected to give a competitive performance. The codes are publicly available at https://github.com/open-mmlab/mmrotate.

PDF Abstract CVPR 2023 PDF CVPR 2023 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here