Phase transitions for high-dimensional joint support recovery

NeurIPS 2008  ·  Sahand Negahban, Martin J. Wainwright ·

We consider the following instance of transfer learning: given a pair of regression problems, suppose that the regression coefficients share a partially common support, parameterized by the overlap fraction $\overlap$ between the two supports. This set-up suggests the use of $1, \infty$-regularized linear regression for recovering the support sets of both regression vectors. Our main contribution is to provide a sharp characterization of the sample complexity of this $1,\infty$ relaxation, exactly pinning down the minimal sample size $n$ required for joint support recovery as a function of the model dimension $\pdim$, support size $\spindex$ and overlap $\overlap \in [0,1]$. For measurement matrices drawn from standard Gaussian ensembles, we prove that the joint $1,\infty$-regularized method undergoes a phase transition characterized by order parameter $\orpar(\numobs, \pdim, \spindex, \overlap) = \numobs{(4 - 3 \overlap) s \log(p-(2-\overlap)s)}$. More precisely, the probability of successfully recovering both supports converges to $1$ for scalings such that $\orpar > 1$, and converges to $0$ to scalings for which $\orpar < 1$. An implication of this threshold is that use of $1, \infty$-regularization leads to gains in sample complexity if the overlap parameter is large enough ($\overlap > 2/3$), but performs worse than a naive approach if $\overlap < 2/3$. We illustrate the close agreement between these theoretical predictions, and the actual behavior in simulations. Thus, our results illustrate both the benefits and dangers associated with block-$1,\infty$ regularization in high-dimensional inference.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods