Pixel-level Intra-domain Adaptation for Semantic Segmentation

Recent advances in unsupervised domain adaptation have achieved remarkable performance on semantic segmentation tasks. Despite such progress, existing works mainly focus on bridging the inter-domain gaps between the source and target domain, while only few of them noticed the intra-domain gaps within the target data. In this work, we propose a pixel-level intra-domain adaptation approach to reduce the intra-domain gaps within the target data. Compared with image-level methods, ours treats each pixel as an instance, which adapts the segmentation model at a more fine-grained level. Specifically, we first conduct the inter-domain adaptation between the source and target domain; Then, we separate the pixels in target images into the easy and hard subdomains; Finally, we propose a pixel-level adversarial training strategy to adapt a segmentation network from the easy to the hard subdomain. Moreover, we show that the segmentation accuracy can be further improved by incorporating a continuous indexing technique in the adversarial training. Experimental results show the effectiveness of our method against existing state-of-the-art approaches.

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Synthetic-to-Real Translation GTAV-to-Cityscapes Labels PixIntraDA mIoU 54.2 # 29

Methods


No methods listed for this paper. Add relevant methods here