PNUNet: Anomaly Detection using Positive-and-Negative Noise based on Self-Training Procedure

27 May 2019  ·  Masanari Kimura ·

We propose the novel framework for anomaly detection in images. Our new framework, PNUNet, is based on many normal data and few anomalous data. We assume that some noises are added to the input images and learn to remove the noise. In addition, the proposed method achieves significant performance improvement by updating the noise assumed in the inputs using a self-training framework. The experimental results for the benchmark datasets show the usefulness of our new anomaly detection framework.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here