PosCUDA: Position based Convolution for Unlearnable Audio Datasets

4 Jan 2024  ·  Vignesh Gokul, Shlomo Dubnov ·

Deep learning models require large amounts of clean data to acheive good performance. To avoid the cost of expensive data acquisition, researchers use the abundant data available on the internet. This raises significant privacy concerns on the potential misuse of personal data for model training without authorisation. Recent works such as CUDA propose solutions to this problem by adding class-wise blurs to make datasets unlearnable, i.e a model can never use the acquired dataset for learning. However these methods often reduce the quality of the data making it useless for practical applications. We introduce PosCUDA, a position based convolution for creating unlearnable audio datasets. PosCUDA uses class-wise convolutions on small patches of audio. The location of the patches are based on a private key for each class, hence the model learns the relations between positional blurs and labels, while failing to generalize. We empirically show that PosCUDA can achieve unlearnability while maintaining the quality of the original audio datasets. Our proposed method is also robust to different audio feature representations such as MFCC, raw audio and different architectures such as transformers, convolutional networks etc.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods