Posterior Collapse and Latent Variable Non-identifiability

NeurIPS 2021  ·  Yixin Wang, David Blei, John P. Cunningham ·

Variational autoencoders model high-dimensional data by positinglow-dimensional latent variables that are mapped through a flexibledistribution parametrized by a neural network. Unfortunately,variational autoencoders often suffer from posterior collapse: theposterior of the latent variables is equal to its prior, rendering thevariational autoencoder useless as a means to produce meaningfulrepresentations. Existing approaches to posterior collapse oftenattribute it to the use of neural networks or optimization issues dueto variational approximation. In this paper, we consider posteriorcollapse as a problem of latent variable non-identifiability. We provethat the posterior collapses if and only if the latent variables arenon-identifiable in the generative model. This fact implies thatposterior collapse is not a phenomenon specific to the use of flexibledistributions or approximate inference. Rather, it can occur inclassical probabilistic models even with exact inference, which wealso demonstrate. Based on these results, we propose a class oflatent-identifiable variational autoencoders, deep generative modelswhich enforce identifiability without sacrificing flexibility. Thismodel class resolves the problem of latent variablenon-identifiability by leveraging bijective Brenier maps andparameterizing them with input convex neural networks, without specialvariational inference objectives or optimization tricks. Acrosssynthetic and real datasets, latent-identifiable variationalautoencoders outperform existing methods in mitigating posteriorcollapse and providing meaningful representations of the data.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.