Practical Layout-Aware Analog/Mixed-Signal Design Automation with Bayesian Neural Networks

27 Nov 2023  ·  Ahmet F. Budak, Keren Zhu, David Z. Pan ·

The high simulation cost has been a bottleneck of practical analog/mixed-signal design automation. Many learning-based algorithms require thousands of simulated data points, which is impractical for expensive to simulate circuits. We propose a learning-based algorithm that can be trained using a small amount of data and, therefore, scalable to tasks with expensive simulations. Our efficient algorithm solves the post-layout performance optimization problem where simulations are known to be expensive. Our comprehensive study also solves the schematic-level sizing problem. For efficient optimization, we utilize Bayesian Neural Networks as a regression model to approximate circuit performance. For layout-aware optimization, we handle the problem as a multi-fidelity optimization problem and improve efficiency by exploiting the correlations from cheaper evaluations. We present three test cases to demonstrate the efficiency of our algorithms. Our tests prove that the proposed approach is more efficient than conventional baselines and state-of-the-art algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here