Predicting Pulmonary Hypertension by Electrocardiograms Using Machine Learning

24 Apr 2023  ·  Eashan Kosaraju, Praveen Kumar Pandian Shanmuganathan ·

Pulmonary hypertension (PH) is a condition of high blood pressure that affects the arteries in the lungs and the right side of the heart (Mayo Clinic, 2017). A mean pulmonary artery pressure greater than 25 mmHg is defined as Pulmonary hypertension. The estimated 5-year survival rate from the time of diagnosis of pulmonary hypertension is only 57% without therapy and patients with right heart failure only survive for approximately 1 year without treatment (Benza et al., 2012). Given the indolent nature of the disease, early detection of PH remains a challenge leading to delays in therapy. Echocardiography is currently used as a screening tool for diagnosing PH. However, electrocardiography (ECG), a more accessible, simple to use, and cost-effective tool compared to echocardiography, is less studied and explored for screening at-risk patients for PH. The goal of this project is to create a neural network model which can process an ECG signal and detect the presence of PH with a confidence probability. I created a dense neural network (DNN) model that has an accuracy of 98% over the available training sample. For future steps, the current model will be updated with a model suited for time-series data. To balance the dataset with proper training samples, I will generate additional data using data augmentation techniques. Through early and accurate detection of conditions such as PH, we widen the spectrum of innovation in detecting chronic life-threatening health conditions and reduce associated mortality and morbidity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here