Probabilistic Human Motion Prediction via A Bayesian Neural Network

14 Jul 2021  ·  Jie Xu, Xingyu Chen, Xuguang Lan, Nanning Zheng ·

Human motion prediction is an important and challenging topic that has promising prospects in efficient and safe human-robot-interaction systems. Currently, the majority of the human motion prediction algorithms are based on deterministic models, which may lead to risky decisions for robots... To solve this problem, we propose a probabilistic model for human motion prediction in this paper. The key idea of our approach is to extend the conventional deterministic motion prediction neural network to a Bayesian one. On one hand, our model could generate several future motions when given an observed motion sequence. On the other hand, by calculating the Epistemic Uncertainty and the Heteroscedastic Aleatoric Uncertainty, our model could tell the robot if the observation has been seen before and also give the optimal result among all possible predictions. We extensively validate our approach on a large scale benchmark dataset Human3.6m. The experiments show that our approach performs better than deterministic methods. We further evaluate our approach in a Human-Robot-Interaction (HRI) scenario. The experimental results show that our approach makes the interaction more efficient and safer. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here