ProcK: Machine Learning for Knowledge-Intensive Processes

10 Sep 2021  ·  Tobias Jacobs, Jingyi Yu, Julia Gastinger, Timo Sztyler ·

We present a novel methodology to build powerful predictive process models. Our method, denoted ProcK (Process & Knowledge), relies not only on sequential input data in the form of event logs, but can learn to use a knowledge graph to incorporate information about the attribute values of the events and their mutual relationships. The idea is realized by mapping event attributes to nodes of a knowledge graph and training a sequence model alongside a graph neural network in an end-to-end fashion. This hybrid approach substantially enhances the flexibility and applicability of predictive process monitoring, as both the static and dynamic information residing in the databases of organizations can be directly taken as input data. We demonstrate the potential of ProcK by applying it to a number of predictive process monitoring tasks, including tasks with knowledge graphs available as well as an existing process monitoring benchmark where no such graph is given. The experiments provide evidence that our methodology achieves state-of-the-art performance and improves predictive power when a knowledge graph is available.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.