Quantifying and Maximizing the Benefits of Back-End Noise Adaption on Attention-Based Speech Recognition Models

3 May 2021  ·  Coleman Hooper, Thierry Tambe, Gu-Yeon Wei ·

This work analyzes how attention-based Bidirectional Long Short-Term Memory (BLSTM) models adapt to noise-augmented speech. We identify crucial components for noise adaptation in BLSTM models by freezing model components during fine-tuning. We first freeze larger model subnetworks and then pursue a fine-grained freezing approach in the encoder after identifying its importance for noise adaptation. The first encoder layer is shown to be crucial for noise adaptation, and the weights are shown to be more important than the other layers. Appreciable accuracy benefits are identified when fine-tuning on a target noisy environment from a model pretrained with noisy speech relative to fine-tuning from a model pretrained with only clean speech when tested on the target noisy environment. For this analysis, we produce our own dataset augmentation tool and it is open-sourced to encourage future efforts in exploring noise adaptation in ASR.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here