Quantile Causal Discovery

Causal inference using observational data is challenging, especially in the bivariate case. Through the minimum description length principle, we link the postulate of independence between the generating mechanisms of the cause and of the effect given the cause to quantile regression. Based on this theory, we develop Quantile Causal Discovery (QCD), a new method to uncover causal relationships. Because it uses multiple quantile levels instead of the conditional mean only, QCD is adaptive not only to additive, but also to multiplicative or even location-scale generating mechanisms. To illustrate the empirical effectiveness of our approach, we perform an extensive empirical comparison on both synthetic and real datasets. This study shows that QCD is robust across different implementations of the method (i.e., the quantile regression algorithm), computationally efficient, and compares favorably to state-of-the-art methods.

PDF ICML 2020 PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here