This paper presents a quantitative fine-grained manual evaluation approach to comparing the performance of different machine translation (MT) systems. We build upon the well-established Multidimensional Quality Metrics (MQM) error taxonomy and implement a novel method that assesses whether the differences in performance for MQM error types between different MT systems are statistically significant... (read more)
PDFMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |