Quantum Differentially Private Sparse Regression Learning

23 Jul 2020  ·  Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, DaCheng Tao ·

The eligibility of various advanced quantum algorithms will be questioned if they can not guarantee privacy. To fill this knowledge gap, here we devise an efficient quantum differentially private (QDP) Lasso estimator to solve sparse regression tasks. Concretely, given $N$ $d$-dimensional data points with $N\ll d$, we first prove that the optimal classical and quantum non-private Lasso requires $\Omega(N+d)$ and $\Omega(\sqrt{N}+\sqrt{d})$ runtime, respectively. We next prove that the runtime cost of QDP Lasso is \textit{dimension independent}, i.e., $O(N^{5/2})$, which implies that the QDP Lasso can be faster than both the optimal classical and quantum non-private Lasso. Last, we exhibit that the QDP Lasso attains a near-optimal utility bound $\tilde{O}(N^{-2/3})$ with privacy guarantees and discuss the chance to realize it on near-term quantum chips with advantages.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods