Recognizing Micro-Actions and Reactions From Paired Egocentric Videos

CVPR 2016  ·  Ryo Yonetani, Kris M. Kitani, Yoichi Sato ·

We aim to understand the dynamics of social interactions between two people by recognizing their actions and reactions using a head-mounted camera. Our work will impact several first-person vision tasks that need the detailed understanding of social interactions, such as automatic video summarization of group events and assistive systems. To recognize micro-level actions and reactions, such as slight shifts in attention, subtle nodding, or small hand actions, where only subtle body motion is apparent, we propose to use paired egocentric videos recorded by two interacting people. We show that the first-person and second-person points-of-view features of two people, enabled by paired egocentric videos, are complementary and essential for reliably recognizing micro-actions and reactions. We also build a new dataset of dyadic (two-persons) interactions that comprises more than 1000 pairs of egocentric videos to enable systematic evaluations on the task of micro-action and reaction recognition.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here