Reconstructing Historical Climate Fields With Deep Learning

30 Nov 2023  ·  Nils Bochow, Anna Poltronieri, Martin Rypdal, Niklas Boers ·

Historical records of climate fields are often sparse due to missing measurements, especially before the introduction of large-scale satellite missions. Several statistical and model-based methods have been introduced to fill gaps and reconstruct historical records. Here, we employ a recently introduced deep-learning approach based on Fourier convolutions, trained on numerical climate model output, to reconstruct historical climate fields. Using this approach we are able to realistically reconstruct large and irregular areas of missing data, as well as reconstruct known historical events such as strong El Ni\~no and La Ni\~na with very little given information. Our method outperforms the widely used statistical kriging method as well as other recent machine learning approaches. The model generalizes to higher resolutions than the ones it was trained on and can be used on a variety of climate fields. Moreover, it allows inpainting of masks never seen before during the model training.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods