Uncovering the Hidden Cost of Model Compression

29 Aug 2023  ·  Diganta Misra, Muawiz Chaudhary, Agam Goyal, Bharat Runwal, Pin Yu Chen ·

In an age dominated by resource-intensive foundation models, the ability to efficiently adapt to downstream tasks is crucial. Visual Prompting (VP), drawing inspiration from the prompting techniques employed in Large Language Models (LLMs), has emerged as a pivotal method for transfer learning in the realm of computer vision. As the importance of efficiency continues to rise, research into model compression has become indispensable in alleviating the computational burdens associated with training and deploying over-parameterized neural networks. A primary objective in model compression is to develop sparse and/or quantized models capable of matching or even surpassing the performance of their over-parameterized, full-precision counterparts. Although previous studies have explored the effects of model compression on transfer learning, its impact on visual prompting-based transfer remains unclear. This study aims to bridge this gap, shedding light on the fact that model compression detrimentally impacts the performance of visual prompting-based transfer, particularly evident in scenarios with low data volume. Furthermore, our findings underscore the adverse influence of sparsity on the calibration of downstream visual-prompted models. However, intriguingly, we also illustrate that such negative effects on calibration are not present when models are compressed via quantization. This empirical investigation underscores the need for a nuanced understanding beyond mere accuracy in sparse and quantized settings, thereby paving the way for further exploration in Visual Prompting techniques tailored for sparse and quantized models.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here