ReRankMatch: Semi-Supervised Learning with Semantics-Oriented Similarity Representation

12 Feb 2021 Trung Quang Tran Mingu Kang Daeyoung Kim

This paper proposes integrating semantics-oriented similarity representation into RankingMatch, a recently proposed semi-supervised learning method. Our method, dubbed ReRankMatch, aims to deal with the case in which labeled and unlabeled data share non-overlapping categories... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet