Retraining-free Model Quantization via One-Shot Weight-Coupling Learning

3 Jan 2024  ·  Chen Tang, Yuan Meng, Jiacheng Jiang, Shuzhao Xie, Rongwei Lu, Xinzhu Ma, Zhi Wang, Wenwu Zhu ·

Quantization is of significance for compressing the over-parameterized deep neural models and deploying them on resource-limited devices. Fixed-precision quantization suffers from performance drop due to the limited numerical representation ability. Conversely, mixed-precision quantization (MPQ) is advocated to compress the model effectively by allocating heterogeneous bit-width for layers. MPQ is typically organized into a searching-retraining two-stage process. Previous works only focus on determining the optimal bit-width configuration in the first stage efficiently, while ignoring the considerable time costs in the second stage. However, retraining always consumes hundreds of GPU-hours on the cutting-edge GPUs, thus hindering deployment efficiency significantly. In this paper, we devise a one-shot training-searching paradigm for mixed-precision model compression. Specifically, in the first stage, all potential bit-width configurations are coupled and thus optimized simultaneously within a set of shared weights. However, our observations reveal a previously unseen and severe bit-width interference phenomenon among highly coupled weights during optimization, leading to considerable performance degradation under a high compression ratio. To tackle this problem, we first design a bit-width scheduler to dynamically freeze the most turbulent bit-width of layers during training, to ensure the rest bit-widths converged properly. Then, taking inspiration from information theory, we present an information distortion mitigation technique to align the behaviour of the bad-performing bit-widths to the well-performing ones.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods