Retrieval-Free Knowledge-Grounded Dialogue Response Generation with Adapters

To diversify and enrich generated dialogue responses, knowledge-grounded dialogue has been investigated in recent years. The existing methods tackle the knowledge grounding challenge by retrieving the relevant sentences over a large corpus and augmenting the dialogues with explicit extra information. Despite their success, however, the existing works have drawbacks in inference efficiency. This paper proposes KnowExpert, a framework to bypass the explicit retrieval process and inject knowledge into the pre-trained language models with lightweight adapters and adapt to the knowledge-grounded dialogue task. To the best of our knowledge, this is the first attempt to tackle this challenge without retrieval in this task under an open-domain chit-chat scenario. The experimental results show that Knowexpert performs comparably with some retrieval-based baselines while being time-efficient in inference, demonstrating the effectiveness of our proposed method.

PDF Abstract dialdoc (ACL) 2022 PDF dialdoc (ACL) 2022 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here