Revisiting Fine-tuning for Few-shot Learning

1 Oct 2019  ·  Akihiro Nakamura, Tatsuya Harada ·

Few-shot learning is the process of learning novel classes using only a few examples and it remains a challenging task in machine learning. Many sophisticated few-shot learning algorithms have been proposed based on the notion that networks can easily overfit to novel examples if they are simply fine-tuned using only a few examples. In this study, we show that in the commonly used low-resolution mini-ImageNet dataset, the fine-tuning method achieves higher accuracy than common few-shot learning algorithms in the 1-shot task and nearly the same accuracy as that of the state-of-the-art algorithm in the 5-shot task. We then evaluate our method with more practical tasks, namely the high-resolution single-domain and cross-domain tasks. With both tasks, we show that our method achieves higher accuracy than common few-shot learning algorithms. We further analyze the experimental results and show that: 1) the retraining process can be stabilized by employing a low learning rate, 2) using adaptive gradient optimizers during fine-tuning can increase test accuracy, and 3) test accuracy can be improved by updating the entire network when a large domain-shift exists between base and novel classes.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods