Revisiting Quantum Algorithms for Linear Regressions: Quadratic Speedups without Data-Dependent Parameters

24 Nov 2023  ·  Zhao Song, Junze Yin, Ruizhe Zhang ·

Linear regression is one of the most fundamental linear algebra problems. Given a dense matrix $A \in \mathbb{R}^{n \times d}$ and a vector $b$, the goal is to find $x'$ such that $ \| Ax' - b \|_2^2 \leq (1+\epsilon) \min_{x} \| A x - b \|_2^2 $. The best classical algorithm takes $O(nd) + \mathrm{poly}(d/\epsilon)$ time [Clarkson and Woodruff STOC 2013, Nelson and Nguyen FOCS 2013]. On the other hand, quantum linear regression algorithms can achieve exponential quantum speedups, as shown in [Wang Phys. Rev. A 96, 012335, Kerenidis and Prakash ITCS 2017, Chakraborty, Gily{\'e}n and Jeffery ICALP 2019]. However, the running times of these algorithms depend on some quantum linear algebra-related parameters, such as $\kappa(A)$, the condition number of $A$. In this work, we develop a quantum algorithm that runs in $\widetilde{O}(\epsilon^{-1}\sqrt{n}d^{1.5}) + \mathrm{poly}(d/\epsilon)$ time. It provides a quadratic quantum speedup in $n$ over the classical lower bound without any dependence on data-dependent parameters. In addition, we also show our result can be generalized to multiple regression and ridge linear regression.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods