Ripple-Type Control for Enhancing Resilience of Networked Physical Systems

24 Mar 2021  ·  Manish K. Singh, Guido Cavraro, Andrey Bernstein, Vassilis Kekatos ·

Distributed control agents have been advocated as an effective means for improving the resiliency of our physical infrastructures under unexpected events. Purely local control has been shown to be insufficient, centralized optimal resource allocation approaches can be slow. In this context, we put forth a hybrid low-communication saturation-driven protocol for the coordination of control agents that are distributed over a physical system and are allowed to communicate with peers over a "hotline" communication network. According to this protocol, agents act on local readings unless their control resources have been depleted, in which case they send a beacon for assistance to peer agents. Our ripple-type scheme triggers communication locally only for the agents with saturated resources and it is proved to converge. Moreover, under a monotonicity assumption on the underlying physical law coupling control outputs to inputs, the devised control is proved to converge to a configuration satisfying safe operational constraints. The assumption is shown to hold for voltage control in electric power systems and pressure control in water distribution networks. Numerical tests corroborate the efficacy of the novel scheme.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here