RNN-based Generative Model for Fine-Grained Sketching

13 Jan 2019  ·  Andrin Jenal, Nikolay Savinov, Torsten Sattler, Gaurav Chaurasia ·

Deep generative models have shown great promise when it comes to synthesising novel images. While they can generate images that look convincing on a higher-level, generating fine-grained details is still a challenge. In order to foster research on more powerful generative approaches, this paper proposes a novel task: generative modelling of 2D tree skeletons. Trees are an interesting shape class because they exhibit complexity and variations that are well-suited to measure the ability of a generative model to generated detailed structures. We propose a new dataset for this task and demonstrate that state-of-the-art generative models fail to synthesise realistic images on our benchmark, even though they perform well on current datasets like MNIST digits. Motivated by these results, we propose a novel network architecture based on combining a variational autoencoder using Recurrent Neural Networks and a convolutional discriminator. The network, error metrics and training procedure are adapted to the task of fine-grained sketching. Through quantitative and perceptual experiments, we show that our model outperforms previous work and that our dataset is a valuable benchmark for generative models. We will make our dataset publicly available.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods