Roadside Units Assisted Localized Automated Vehicle Maneuvering: An Offline Reinforcement Learning Approach

7 May 2024  ·  Kui Wang, Changyang She, Zongdian Li, Tao Yu, Yonghui Li, Kei Sakaguchi ·

Traffic intersections present significant challenges for the safe and efficient maneuvering of connected and automated vehicles (CAVs). This research proposes an innovative roadside unit (RSU)-assisted cooperative maneuvering system aimed at enhancing road safety and traveling efficiency at intersections for CAVs. We utilize RSUs for real-time traffic data acquisition and train an offline reinforcement learning (RL) algorithm based on human driving data. Evaluation results obtained from hardware-in-loop autonomous driving simulations show that our approach employing the twin delayed deep deterministic policy gradient and behavior cloning (TD3+BC), achieves performance comparable to state-of-the-art autonomous driving systems in terms of safety measures while significantly enhancing travel efficiency by up to 17.38% in intersection areas. This paper makes a pivotal contribution to the field of intelligent transportation systems, presenting a breakthrough solution for improving urban traffic flow and safety at intersections.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here