Robot Localization in Floor Plans Using a Room Layout Edge Extraction Network

5 Mar 2019  ·  Federico Boniardi, Abhinav Valada, Rohit Mohan, Tim Caselitz, Wolfram Burgard ·

Indoor localization is one of the crucial enablers for deployment of service robots. Although several successful techniques for indoor localization have been proposed, the majority of them relies on maps generated from data gathered with the same sensor modality used for localization. Typically, tedious labor by experts is needed to acquire this data, thus limiting the readiness of the system as well as its ease of installation for inexperienced operators. In this paper, we propose a memory and computationally efficient monocular camera-based localization system that allows a robot to estimate its pose given an architectural floor plan. Our method employs a convolutional neural network to predict room layout edges from a single camera image and estimates the robot pose using a particle filter that matches the extracted edges to the given floor plan. We evaluate our localization system using multiple real-world experiments and demonstrate that it has the robustness and accuracy required for reliable indoor navigation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here