Robot Representation and Reasoning with Knowledge from Reinforcement Learning

28 Sep 2018  ·  Keting Lu, Shiqi Zhang, Peter Stone, Xiaoping Chen ·

Reinforcement learning (RL) agents aim at learning by interacting with an environment, and are not designed for representing or reasoning with declarative knowledge. Knowledge representation and reasoning (KRR) paradigms are strong in declarative KRR tasks, but are ill-equipped to learn from such experiences. In this work, we integrate logical-probabilistic KRR with model-based RL, enabling agents to simultaneously reason with declarative knowledge and learn from interaction experiences. The knowledge from humans and RL is unified and used for dynamically computing task-specific planning models under potentially new environments. Experiments were conducted using a mobile robot working on dialog, navigation, and delivery tasks. Results show significant improvements, in comparison to existing model-based RL methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here