Robust photon-efficient imaging using a pixel-wise residual shrinkage network

5 Jan 2022  ·  Gongxin Yao, YiWei Chen, Yong liu, Xiaomin Hu, Yu Pan ·

Single-photon light detection and ranging (LiDAR) has been widely applied to 3D imaging in challenging scenarios. However, limited signal photon counts and high noises in the collected data have posed great challenges for predicting the depth image precisely. In this paper, we propose a pixel-wise residual shrinkage network for photon-efficient imaging from high-noise data, which adaptively generates the optimal thresholds for each pixel and denoises the intermediate features by soft thresholding. Besides, redefining the optimization target as pixel-wise classification provides a sharp advantage in producing confident and accurate depth estimation when compared with existing research. Comprehensive experiments conducted on both simulated and real-world datasets demonstrate that the proposed model outperforms the state-of-the-arts and maintains robust imaging performance under different signal-to-noise ratios including the extreme case of 1:100.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here