RotationOut as a Regularization Method for Neural Network

ICLR 2020 Kai HuBarnabas Poczos

In this paper, we propose a novel regularization method, RotationOut, for neural networks. Different from Dropout that handles each neuron/channel independently, RotationOut regards its input layer as an entire vector and introduces regularization by randomly rotating the vector... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper